Technical Manual
for
Whozz Calling? POS Series
4 and 8 Line Units
[Belcore 202 (USA), BT (UK), and ETSI Version]
Introduction

The Whozz Calling? POS reports telephone line number and Caller ID information. Caller ID information consists of date, time, caller’s number and caller’s name (if sent). This information is sent via serial stream to any serial device such as a printer or a computer immediately after Caller ID data is captured. Data can be sent at either 9600 or 1200 Baud. Two different formats are available. The CallerID.com format conforms with all other Whozz Calling? products. The limited format matches the TCI, MLX series format. If multiple units are to be connected together, each individual unit can be set for different line numbers. All options, formats, and addresses are set using DIP switches located on the front panel of the unit.

Telephone Line and Serial Communication Requirements

The monitoring unit is designed to collect call data from standard telephone lines (trunk or CO lines) coming into your building. It will not work properly if connected to extensions (or station) lines coming from a telephone switch. Connect the unit only to analog loop start, ground start, or Centrex™ phone lines. It is not designed for ISDN, T1, T3, E1, E3, DID, or Digital Centrex type phone lines.

The unit can be connected to a printer or to a computer through a serial port. A serial printer connects using a null modem adapter or null modem cable. A parallel printer requires a serial to parallel converter as well as a null modem adapter. If connected to a computer, the serial port must be free of COM Port and IRQ conflicts and dedicated to the monitoring unit. The unit can work with any serial port regardless of the COM number and/or IRQ it is using.

Quick Start Procedure

In order to see Caller ID information on your computer, you will need some type of serial communications program such as Hyper-Terminal, PC Plus, PC Anywhere, etc. Follow the instructions below for connecting to your computer and refer to Fig. 1.

1. Connect the supplied 9 pin cable to the female serial connector on unit marked “To Computer”.
2. Connect this same cable to an available serial port on the computer.
3. Plug in 2-wire RJ11 phone lines into the modular phone jacks on the unit.
4. Use any terminal emulation program or modem software set to terminal mode.
5. Choose the COM port number to which the unit is connected and set the communication parameters to 9600 Baud, 8 Bit, 1 Stop, No Parity.
6. Plug in the power supply and make sure the red channel LEDs light.*
7. Make a phone call to one of the lines connected to the unit. The Caller ID information will appear on your screen.

* The power up sequence of the unit will flash the LEDs and a couple of seconds. The unit will send the firmware version number of each channel to the serial port when the DIP switches are positioned to send the CallerID.com format (Fig. 2a).
Fig. 1 Front and Back Views of 8 Line Model

WHOOZ CALLING? POS Caller ID

DIP Switch Controls
#1-3 Set unit line numbers when 2 or more units are connected together
#4 Caller ID Signal Type Transmitted by TelCo (Off - Belcore 202/US, On - BT/UK or ETSI)
#5 Baud rate (Off - 9600, On - 1200)
#7 Output Format (Off - CallerID.com, On - TCI)
#8 Unit model (Off - 8 line, On - 4 line)
#9 Not Connected

During power-up, LEDs will flash and then remain on. When the line rings, the LEDs will follow the ring cycle.

2 conductor jacks connect to each phone line using 1 pair of wires on cord.

Standard RS232 1200 or 9600 Baud. (Default is 9600 Baud). 8 Bit, 1 Stop, No Parity. Top jack connects to bottom jack of additional unit.

Power Jack (9 VDC Center Negative)

Complies with FCC Part 68. FCC Reg. No. 2EWUSA-73088-ND-N REN 0.5A, Jack (USOC) RJ11
Dip Switch Settings

INDIVIDUAL UNIT ADDRESSING - SWITCHES 1-3

As many as 12 individual units can be connected together to monitor up to 96 phone lines. Each unit should be configured to report data with appropriate lines numbers. The first field in the data stream indicates the phone line for the subsequent Caller ID data transmitted. DIP switches 1-3 determine the phone line number that each unit reports. Refer to the table below to set each unit.

<table>
<thead>
<tr>
<th>Address</th>
<th>DIP Switch #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit #</td>
<td>Lines</td>
</tr>
<tr>
<td>1</td>
<td>1-8</td>
</tr>
<tr>
<td>2</td>
<td>9-16</td>
</tr>
<tr>
<td>3</td>
<td>17-24</td>
</tr>
<tr>
<td>4</td>
<td>25-32</td>
</tr>
<tr>
<td>5</td>
<td>33-40</td>
</tr>
<tr>
<td>6</td>
<td>41-48</td>
</tr>
<tr>
<td>7</td>
<td>49-56</td>
</tr>
<tr>
<td>8</td>
<td>57-64</td>
</tr>
<tr>
<td>9+</td>
<td></td>
</tr>
</tbody>
</table>

Use the supplied serial cable to connect unit #1 with unit #2, unit #2 with unit #3, etc. The cable attaches to the unit #1 port marked "To Next Unit" to the unit #2 port marked "To Computer." Unit #2 connects with unit #3 in the same manor.

CALLER ID DELIVERY TYPE

Caller ID signaling is sent by the local phone company's central office in either of 4 different electronic formats. Belcore 202 signaling is sent between the first and second ring in the countries such as the US, Canada, Mexico, Australia and others. Caller ID is sent before the first ring by British Telecom (BT) in the United Kingdom. Similarly, Caller ID is sent before the first ring or after a very short ring burst using ETSI signaling that is prevalent in eastern and northern Europe. In countries or regions where older central office equipment is used Caller ID is delivered via DTMF (touch-tones). Contact CallerID.com for a different version of this unit if Caller ID is delivered via DTMF signaling.

This unit is capable of capturing either Belcore 202, BT, or ETSI Caller ID signaling.

<table>
<thead>
<tr>
<th>Caller ID Signaling</th>
<th>DIP Switch #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belcore 202 (USA)</td>
<td>-</td>
</tr>
<tr>
<td>BT or ETSI</td>
<td>ON</td>
</tr>
</tbody>
</table>

BAUD RATE SETTING

The unit can be set to deliver data to the serial port at either 9600 or 1200 Baud. The DIP switch number 5 controls this setting. Refer to the table below:

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>DIP Switch #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>ON</td>
</tr>
</tbody>
</table>

OUTPUT FORMAT

The unit can deliver either the CallerID.com Whozz Calling? format or the alternative TCI/Bek-Tel format. DIP switch number 7 control the unit output format. Refer to the table below and Fig. 2:

<table>
<thead>
<tr>
<th>Format</th>
<th>#7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallerID.com</td>
<td>-</td>
</tr>
<tr>
<td>TCI/Bek-Tel</td>
<td>ON</td>
</tr>
</tbody>
</table>
Fig. 2a CallerID.com Format
(DIP Switch #7 set OFF)

NOTES: No dashes are inserted when the UK-BT/ETSI type Caller ID is captured (DIP switch 4 set ON). All fields left justified. 1 space separates each field

Fig. 2b TCI Format
(DIP switch #7 set ON)

NOTE: All fields right justified. 5 spaces separate each field except number and name fields.
The CallerID.com format is recommended since it is the industry standard. This format is used with all other CallerID.com products with serial output. Several software vendors have adopted this standard since it gives them the flexibility to handle any type of call accounting application. The CallerID.com format provides additional fields for outbound digits dialed, inbound digits dialed after answer, number of rings before answer, call duration, and type of distinctive ring pattern. The Standard Whozz Calling? reports this additional phone call information. Even if your present application does not require this additional information, we still recommend using the CallerID.com format so that future applications may be converted to read the additional data. Please refer to Fig. 2a for the exact format specifications.

CONNECTING 4 LINE MODELS TOGETHER

When connecting multiple Whozz Calling? POS 4 line models together set DIP switch #8 to ON. The DIP switches 1-3, used to set the correct line numbers for each unit, will increment line numbers by 4 instead of 8. For example, the first 4 line model would have DIP switch #8 ON (and #1, #2 & #3 OFF) to set it for line numbers 1 through 4. The second unit would have #8 ON, #1 ON (and #2 & #3 OFF) for lines 5 through 9.

<table>
<thead>
<tr>
<th>Model</th>
<th>DIP Switch #8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 line</td>
<td>-</td>
</tr>
<tr>
<td>4 line</td>
<td>ON</td>
</tr>
</tbody>
</table>

Serial Connections and Phone Connections

The supplied six-foot, 9 pin serial cable connects the unit to a serial port on your computer. If your computer does not have a 9 pin serial port, a USB to 9 pin serial adapter cable will be required. These USB to serial adapters cables are available at any computer or Radio Shack™ store. Additional Caller ID interface units are connected to one another using the supplied 9 pin cable. Please refer to page 3 for more information on connecting multiple units.

Phone lines are connected to the back of the unit using modular jacks. Input and output ports are provided for wiring systems using 2 wire RJ11 connections. If the wiring coming into your building does not terminate in modular jacks, contact your telephone vendor to add these modular connections.

CONNECTING DIRECTLY TO A PRINTER

Printers have either a serial or parallel input. Most newer printers use parallel connections. A parallel printer will require a separate serial-to-parallel converter unit.

A null modem adapter or cable must be used when connecting a printer directly to the unit. The monitoring unit sends information out on pin 2 while a serial printer or serial-to-parallel converter receives information on pin 3. The null modem adapter reverses the transmit and receive pins by connecting pin 2 to pin 3 and pin 3 to pin 2. (The null modem adapter is not required on a computer serial port which receives information on pin 2.)

A 9-25 pin adapter may also be required and is available at any computer or Radio Shack™ store.

Serial printers are available from only a few manufacturers. Okidata Corporation carries at least 2 different models. Ask for Model 590 with serial option or Model 395 with serial option.

Set your printer to 9600 Baud, 8 Data Bits, 1 Stop Bit, No Parity. The unit sends both Carriage Return and Line Feed commands, so the printer should be set to No Automatic Line Feed.

CONNECTING TO COMPUTER

You may have purchased a software package designed to work in conjunction with the Whozz Calling? unit. The software may have a built-in automatic search and find function. This routine will search all COM and IRQ numbers in an attempt to determine settings for the serial port to which the unit is connected. If an error message indicates that the software cannot communicate or “find” the unit, you will need to run the Loopback Test below to determine if there exists communication port conflicts within you computer. If your software requires a manual selection of the COM and/or IRQ settings, the Loopback Test is also helpful in determining these parameters.

The unit should be connected to the serial port, placed in a convenient location next to the computer, and your software installed. Permanent installation and phone line connections can be made once communications between the software
The unit should be connected to the serial port, placed in a convenient location next to the computer, and your software installed. Permanent installation and phone line connections can be made once communications between the software and hardware is established. Plug in the power to the unit and run the software. Phone lines need not be connected at this time.

Your software will require that you set the COM port number to which the unit is connected. Try different COM numbers to establish communication. If no communication can be established then chances are the serial port is not configured correctly or the COM port number and/or IRQ number defined for the serial port conflicts with another device such as an internal FAX/modem. To determine whether a serial port is configured and working properly use HyperTerminal in Windows and the Loopback test procedure on the following page.

Loopback Test for a Serial Port Connection in Windows

1. Make sure your software program that runs in conjunction with Whozz Calling? is closed.
2. From your Desktop Select Start and then Run. Type `HyperTrm.exe` and click "OK".
3. In the Connection Description dialog box Type: "Test" on the Name line and Select: OK.
4. In the Phone Number dialog box leave phone number blank and Select: Connect using Direct to COMx. Where "x" represents the COM port number being tested (ex. 1,2,3, etc.) Select: OK.
5. In the Properties dialog box Select Bits per second: 9600, Data bits: 8, Parity: None, Stop bits: 1, and Flow Control: None. Then Select: OK.
6. Select: File/Properties. In the Test Properties dialog box select the Settings tab and set Emulation to ANSI. Select ASCII Setup and make sure that Echo typed characters locally box is not checked.
7. Select: Call/Connect and type any character again and repeat above as necessary.

If you obtain a positive result, close HyperTerminal and run the your software again. If not, you may have a conflict between your serial port settings and an internal device such as a FAX/modem. Consult your computer technician to resolve the conflict.

CONNECTING TO PHONE LINES

The unit will only capture Caller ID when connected to the central office phone lines coming into the building. The unit will not function properly when connected to extension lines from a telephone switch. If your wiring is modular, simple modular splitters will be required to form a "Y" or branch circuit such that each phone line can connect to the Whozz Calling? POS unit in parallel.

If your existing telephone wiring is not modular, consisting of "punched down" solid wire connections, it is recommended that a qualified telephone technician adapt modular connectors for the installation. Figure 2 diagrams the parallel connections required for proper installation.

4-Wire (RJ14) Phone Cord Connections

Most modular phone cords contain 4 wires which can supply two phone lines (2 wires for each line.) Your system may have either 2 of the wires connected (RJ11 - 1 phone line) or four wires connected (RJ14 - 2 phone lines). The modular connectors on the unit are equipped to handle only 2-wire RJ11 connections. If you have a 4-wire (RJ14) system, consult with a telephone technician to convert them to a compatible 2-wire RJ11 system.

MOUNTING HARDWARE

A 1 inch wide black plastic mounting bracket is used to attach the unit to a wall or phone board. Remove the two Phillips head screws on the bottom of the enclosure and attach the bracket to the unit with the same screws. Mount on wall using appropriate hardware.
Even if your telephone system switch is Caller ID capable, it will not pass analog Caller ID. Therefore, the POS series units must be connected to the phone lines coming into the building from the telephone company. These lines are branched (split or half-tapped) and connected to the input jacks of the monitoring unit. If these lines are not modular, solid wire to modular adapters must to be installed.
Specifications

Supply Voltage: 9 VDC, center negative
Supply Current: Less than 250 mA
Loop Current Draw: Less than 1 mA
Loop Voltage: 30 to 105 VDC
Ringing Voltage: 60 to 130 VAC
Insertion Loss: Less than 0.3 dB
Voltage Drop: 2.7 VDC at 20 mA loop current
Ringer Equivalence: (REN) 0.1 B
Dimensions: 4.3" x 3.25" x 1.5"

Manufacture’s Information

CallerID.com
3107-D Medlock Bridge Road
Norcross, GA 30071

Sales (800) 240-4637
Customer Service (770) 263-7111
FAX (770) 263-0049

Web Site www.callerid.com

Warranty Information

CallerID.com will repair this product with new or rebuilt parts, free of charge, when returned shipping prepaid to the CallerID.com repair facility in Norcross, GA within 12 months from the date of original purchase. This warranty is extended only to the original purchaser. A purchase receipt or other acceptable proof of purchase date will be required before warranty service is rendered.

This warranty covers failures due only to defects in materials or workmanship occurring during normal use. It does not cover damage which occurs in shipment; failures which are caused by products not manufactured by CallerID.com; failures which result from accident, misuse, abuse, neglect, mishandling, misapplication, alteration, modification or unintended use of product; service by anyone other than an authorized CallerID.com repair facility; or damage attributed to an act of God. Lightning is considered an act of God. CallerID.com makes no other warranty, either expressed or implied, with respect to this product. If a problem develops concerning this product, contact CallerID.com directly for a Return Material Authorization (RMA).

FCC Information

This unit is designed to conform to federal regulations and complies with Part 68 of the FCC rules. On the back of this equipment is a label that contains the FCC registration number and ringer equivalence number (REN) for this equipment. Upon request, you may have to provide the FCC registration number and the REN to your telephone company.

The ringer equivalence number (REN) is used to determine how many devices can be connected to your telephone line. In most areas, the sum of the RENs on any one line should not exceed 5. If too many devices are attached, your phones may not ring properly and other devices on the line may not detect the ring signal.

In the most unlikely event that your unit causes significant problems on the telephone line, the telephone company can disconnect your service. The telephone company will attempt to notify you in advance and will advise you of your right to file a complaint with the FCC. The telephone company may make changes in its technical operation and procedures that may affect the operation of this device. The telephone company is required to give adequate notice of such changes. This product should not be connected to coin operated or party line systems.
Appendix - RS232 Pin Outs

When the serial port is configured to “No Flow Control,” only Transmit and Ground connections are required. Pin 7 and Pin 8 need to be connected only if other serial flow control types are selected.

<table>
<thead>
<tr>
<th>Computer DB9/M Serial Port</th>
<th>Monitoring Unit DB9/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1 (Carrier Detect)</td>
<td>Pin 1 (No Connection)</td>
</tr>
<tr>
<td>Pin 2 (Receive)</td>
<td>Pin 2 (Transmit)</td>
</tr>
<tr>
<td>Pin 3 (Transmit)</td>
<td>Pin 3 (Receive)</td>
</tr>
<tr>
<td>Pin 4 (Data Term. Ready)</td>
<td>Pin 4 (No Connection)</td>
</tr>
<tr>
<td>Pin 5 (Ground)</td>
<td>Pin 5 (Ground)</td>
</tr>
<tr>
<td>Pin 6 (Data Set Ready)</td>
<td>Pin 6 (Control Line between Units)</td>
</tr>
<tr>
<td>Pin 7 (Request to Send)</td>
<td>Pin 7 (Internal)</td>
</tr>
<tr>
<td>Pin 8 (Clear to Send)</td>
<td>Pin 8 (Connection)</td>
</tr>
<tr>
<td>Pin 9 (Ring Indicator)</td>
<td>Pin 9 (No Connection)</td>
</tr>
</tbody>
</table>

Pin 6 is connected only between multiple Whozz Calling? units and acts as a control line. When units are not transmitting data this line resides at -9 VDC. Upon transmit, the unit pulls this line to +9 VDC. Other Whozz Calling? units connected will detect this as a busy condition and will not transmit until the line returns to -9 VDC.

If connecting to a 25 pin serial port on the computer, we suggest using a 9 to 25 pin serial adapter. The pin outs on a 25 pin serial port are not the same as a 9 pin port. When the serial port is configured to “No Flow Control”, only Transmit and Ground connections are required. Request to Send and Clear to Send connections will need to be connected only if other serial flow control types are selected.

<table>
<thead>
<tr>
<th>Computer DB25/M Serial Port</th>
<th>Monitoring Unit DB9/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 2 (Transmit)</td>
<td>Pin 2 (Transmit)</td>
</tr>
<tr>
<td>Pin 3 (Receive)</td>
<td>Pin 3 (Receive)</td>
</tr>
<tr>
<td>Pin 4 (Request to Send)</td>
<td>Pin 7 (Internal)</td>
</tr>
<tr>
<td>Pin 5 (Clear to Send)</td>
<td>Pin 8 (Connection)</td>
</tr>
<tr>
<td>Pin 7 (Ground)</td>
<td>Pin 5 (Ground)</td>
</tr>
</tbody>
</table>